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Structural Cost Optimization using Interval FEM 
Simi Rose George 

 

Abstract—In the conventional (deterministic) FEM, the possibility of failure is reduced to acceptably small levels by factors of safety based 
on judgment-derived from past successful and unsuccessful performances. By contrast, the interval FEM can be applied in situations 
where it is not possible to get reliable probabilistic characteristics of the structure. This is important in concrete structures, wood structures, 
composite structures, biomechanics and in many other areas. The goal of the Interval Finite Element Method is to find upper and lower 
bounds of different characteristics of the model (e.g. stress, displacements, yield surface etc.) and use these results in the design process. 
Deflection, bending moment & shear forces of structure are computed using MATLAB coding. And designed a structure using modified IS 
code equations. The cost of structure is calculated and compared with the cost from conventional design. 

Index Terms—Interval FEM,Optimiation,Space frame equations,RC in FEM, Wind load, Structural cost, Earthquake load, Uncertainties 

———————————————————— 

1 INTRODUCTION

ittle attention has been paid to the cost optimization prob-
lem, particularly of realistic three-dimensional structures. 

Cost optimization is becoming a priority in all civil engineer-
ing projects, manufacturing and construction organizations. 

Interval FEM is a method to incorporate all the uncertain 
parameters. These are modelled by using the interval theory 
and solved for responds by interval arithmetic [5]. 

Goal of a structural engineer is to achieve required strength 
for frame structure with minimum cost in every design. A new 
method is developed in the paper to optimize the initial cost of 
structure using fuzzy logic in FEM. Instead of using the inter-
val arithmetic directly, the special algorithm developed [4] by 
GuoShu-xiang& Lu Zhen-zhou is used for optimal perfor-
mance of MATLAB coding.An apartment is selected for illu-
stration of the method.  The steps involved are demonstrated 
in Fig.1 

Fig. 1  Methodology followed 

2 CONVENTIONAL DESIGN 
The building was modelled and analysedconvetionallyin 

Etabs. The deformation of the frame analysed using the soft-
ware is shown in Fig.2. Cost of the structure from this is calcu-
lated to compare the degree of optimization by IFEM 

3 FEM DESIGN 
The complete frame is discretised and each element is consid-
ered as space frames. Due to symmetry only half of the struc-
ture analysed. This reduces the computational cost. The ele-

ment numbering is given in Table.1 and node numbering in 
Table.2. 

 
Fig. 2Etabs analysis 

 
TABLE.1 

ELEMENT NUMBERIG 
Type of 
element 

Floor Number 
of ele-
ments 

Element Num-
bering 

Column Base 24 1 -24 
Plinth 24 25 – 48 
Story 1 24 49 – 72 
Story 2 24 73 – 96 
Roof 08 97 – 104 

X- Beams Plinth 21 105 – 125 
Story 1 20 126 – 145 
Story 2 20 146 – 165 
Roof 20 166 – 185 
Roof Top 06 186 – 191 

Y- Beams Plinth 16 192 – 207 
Story 1 16 208 – 223 
Story 2 16 224 – 239 
Roof 16 240 – 255 
Roof Top 04 256 – 259 

Total 259 
 

TABLE.2 
NODE NUMBERING 

Floor Number of Nodes Node Numbers 
Base 24 1 - 24 
Plinth 24 25 - 48 
Story 1 25 49 - 72 & 129 
Story 2 25 73 – 96 & 130 
Roof 25 97 – 120 & 131 
Roof Top 08 122 – 128 
Total 131 

Conventional method

Draw building model

Analysis using ETABS

Calculate cost

I-FEM method

Model stucture in FEM 
using space frame 

equations

MatLab coding for I-FEM

Applying criteria as per 
norms

Calculate cost & 
Compare

L 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016                                                                                        1609 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org  

 
Dimensions of all the elements are taken from the ETABS 

analysis as this is used as reference to our programming ini-
tially and optimized and reduced the sizes. The displacements 
are compared to check the program and then proceed to the 
optimization.  

 

3.1 S
p
a
c
e
 
f
r
a
m
e
 
e
quations 
Using space frame equations [8] the element stiffness ma-

trix and force vector are calculated as follows: 
 
 
Where E Young’s modulus 
 G Shear modulus 
 A Area of cross section 
 J Torsional constant 
 IP Polar moment of inertia 
 Is Moment of inertia of cross section 

about s axis 
 Ir Moment of inertia of cross section 

about r axis 
 L Length of element 
 

𝑟𝑟𝑙𝑙𝑇𝑇 =  � (𝑞𝑞𝑠𝑠 𝑞𝑞𝑟𝑟)𝑁𝑁𝑇𝑇
𝐿𝐿

0
𝑑𝑑𝑑𝑑 (1) 

 
Now the displacement in local coordinates can be trans-

formed to global using the equation (2). 
 

𝑑𝑑𝑙𝑙 = 𝑇𝑇𝑑𝑑 
 

𝑇𝑇 =  �
𝐻𝐻 0 0 0
0 𝐻𝐻 0 0
0
0

0
0

𝐻𝐻 0
0 𝐻𝐻

� 

 

𝐻𝐻 =  �
𝑙𝑙𝑑𝑑 𝑚𝑚𝑑𝑑 𝑛𝑛𝑑𝑑
𝑙𝑙𝑠𝑠 𝑚𝑚𝑠𝑠 𝑛𝑛𝑠𝑠
𝑙𝑙𝑟𝑟 𝑚𝑚𝑟𝑟 𝑛𝑛𝑟𝑟

� 

 

(2) 

 
By substituting the transformation equation in FEM equation 
in local coordinates, equation (3) is derived 
 

𝑇𝑇𝑇𝑇𝑘𝑘𝑙𝑙𝑇𝑇𝑑𝑑 =  𝑇𝑇𝑇𝑇𝑟𝑟𝑙𝑙  (3) 
 

3.2 Boundary Condition 

Because of large dimensions, the floor system within its 
own plane is essentially rigid and known as a rigid dia-
phragm. Thus individual frames in a building do not behave 
as their isolated counterparts.  

 
Fig. 3 Rigid diaphragm constrains 

With the assumption of an in-plane rigid floor system, the 
two displacements in x and y directions (u and v) and a rota-
tion about the z axis (o) are constrained as given in Eq.(4) 

�
𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖
𝑜𝑜𝑖𝑖
� =  �

1 0 −(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑚𝑚 )
0 1 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚
0 0 1

� �
𝑢𝑢𝑚𝑚
𝑣𝑣𝑚𝑚
𝑜𝑜𝑚𝑚
� (4) 

Where 𝑥𝑥𝑖𝑖  and 𝑦𝑦i  are the coordinates of node i 

When creating frame models using centreline dimensions, 
the joint zone with these large member sizes is fairly large. 
Very little deformations are expected within this joint zone.  

 
Fig. 4 Rigid joint constrains 
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Thus the Eq.(5) is used to define the rigid joint zone 

𝜃𝜃1 = 𝜃𝜃2;   𝑢𝑢1 = 𝑢𝑢2 + 𝑏𝑏𝜃𝜃2; 

𝑣𝑣1 = 𝑣𝑣2 + 𝑎𝑎𝜃𝜃2 
(5) 

After incorporating these constraints using Langrangian 
multiplier, the rest of the analysis follows the standard proce-
dures of space frame. 

It is assumed that all the nodes in the base are fixed and 
thus the displacements are zero. And these can be enforced 
directly. However, other constraints of rigid diaphragm and 
rigid joint are incorporated using Langrangian multiplier 
method.  

3.3 Loads 

All the area loads are converted using the well-known 
trapezoidal method and applied on beams. The earthquake 
and wind loads are not taken in the initial program. These are 
included in IFEM as uncertainties of loads. 

4 INTERVAL FEM 
Initial coding has done for FEM and  modefied it to include 

the uncertainties. 
4.1 Load Uncertainties 

Major load uncertainty comes from wind and earth-
quake. The wind load [12] is applied on all the peripheral 
frames as per the details given below: 

Basic wind speed in the place building located, 𝑉𝑉𝑏𝑏 = 35 𝑚𝑚/𝑠𝑠 
The apartment building can be grouped under all general 

building and structure so should be designed for 50 years of 
design life. And thus the risk coefficient, 𝑘𝑘1 = 1 

The terrain factor is interpolated for building height, 

𝑘𝑘2 = 0.605 

The ground is plane and thus the topography factor, 
𝑘𝑘3 = 1 

So the design wind speed, 𝑉𝑉𝑧𝑧 = 𝑘𝑘1𝑘𝑘2𝑘𝑘3𝑉𝑉𝑏𝑏  
Using the above equation, the wind speed is calculated as 

21.18 m/s. And the design wind pressure is 269 N/m2 using 
the equation 

Design wind pressure, 𝑃𝑃𝑑𝑑 = 0.6 𝑉𝑉𝑧𝑧2 
Similarly, the wind pressure at different heights are cal-

culated and found these are following a parabolic shape as 
shown in Fig.5 

 
Fig. 5 Wind Pressure variation 

This pressure is applied on the peripheral areas and thus 
converted to line loads applied in lateral direction to the pe-
ripheral beams and columns using the trapezoidal method. 
And the wind pressure is not applied simultaneously on all 
the 04 sides. It is applied in each side and selected the largest 
value of shear and moment. 

During an earthquake, ground motions occur in a ran-
dom fashion, both horizontally and vertically, in all the direc-
tions radiating from the epicenter. These ground motions 
cause structures to vibrate and induce internal forces on them. 
These seismic dynamic loads are represented as equivalent 
lateral static loads in Fig.6 

 

 
Fig. 6 Earthquake load variation 

 
It is general assumption that the earthquake and wind ef-

fects do not coexist. So both are applied separately and se-
lected the largest values. 
4.2 Uncertainties in material properties 

The properties are calculated from experiments and con-
solidate in Table.3 

TABLE.3 
MATERIAL PROPERTIES 

Property Mean value Standard 
deviation 

Interval 

Modulus of 
Elasticity – 
Steel Fe415 

1.999 x 1011 4.998x 109 [1.899x1011   

2.099x1011] 

Modulus of 
Elasticity – 
Concrete M25 

2.482 x 1010 9.928x 108 [2.283x1010    

2.681x1010] 
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Modulus of 
Elasticity – 
Concrete M20 

2.225 x 1010 1.034x 109 [2.018x1010    

2.442x1010] 

Modulus of 
Elasticity – 
Concrete M15 

1.929 x 1010 1.118x 109 [1.705x1010    

2.153x1010] 

Poisson’s ratio- 
Steel Fe415 

0.285 7.5x10-3 [0.27 0.30] 

Poisson’s ratio- 
Concrete 

0.14 2.0x10-3 [0.10 0.18] 

4.3 BENDING MOMENT AND SHEAR FORCE 
All the 06 elemental displacements (𝑢𝑢, 𝑣𝑣,𝑤𝑤,𝜃𝜃,∅,𝜓𝜓) along 

the length of frame can be formulated from the nodal dis-
placements. All these are functions of t, distance from node 1 
of the element along t-axis. The bending moments, shear 
forces and twisting moments are given in equation 6,7 & 8 
respectively. 
 

𝑀𝑀𝑠𝑠(𝑑𝑑) = −𝐸𝐸𝐼𝐼𝑠𝑠 �
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑑𝑑2 � ;  0 ≤ 𝑑𝑑 ≤ 𝐿𝐿 

𝑀𝑀𝑟𝑟(𝑑𝑑) = 𝐸𝐸𝐼𝐼𝑟𝑟 �
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑑𝑑2� ;  0 ≤ 𝑑𝑑 ≤ 𝐿𝐿 

 
(6) 

𝑉𝑉𝑠𝑠(𝑑𝑑) = −𝐸𝐸𝐼𝐼𝑠𝑠 �
𝑑𝑑3𝑤𝑤
𝑑𝑑𝑑𝑑3 � ;  0 ≤ 𝑑𝑑 ≤ 𝐿𝐿 

𝑉𝑉𝑟𝑟(𝑑𝑑) = 𝐸𝐸𝐼𝐼𝑟𝑟 �
𝑑𝑑3𝑣𝑣
𝑑𝑑𝑑𝑑3� ;  0 ≤ 𝑑𝑑 ≤ 𝐿𝐿 

 
(7) 

𝑀𝑀𝑑𝑑(𝑑𝑑) = 𝐺𝐺𝐺𝐺
𝑑𝑑𝜓𝜓
𝑑𝑑𝑑𝑑

 
(8) 

Where 𝜓𝜓(𝑑𝑑) = �1 − 𝑑𝑑
𝐿𝐿�

𝑑𝑑
𝐿𝐿� � � 𝑑𝑑4

𝑑𝑑10
� ; 0 ≤ 𝑑𝑑 ≤ 𝐿𝐿 

However we are interested for the maximum values of the 
moments and forces. For the simply supported beams with 
equally distributed load, the maximum moments are at the 
centre (t = L/2) and the shear forces the critical sections are at 
a distance of d, the depth of beam, from either ends. The axial 
forces are same throughout the length. 

4.4 Design Criteria 

The HYSD Fe-415 steel is used for the complete frame. The 
maximum possible bending moment, axial forces are limited 
as per the Equation 9 and 10 respectively. And these are de-
rived from maximum yield strain 

𝑀𝑀𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑑𝑑 = 0.207 𝐹𝐹𝑐𝑐𝑘𝑘𝑏𝑏𝑑𝑑2 (9) 

𝐹𝐹𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑑𝑑 =  0.67 𝐹𝐹𝑐𝑐𝑘𝑘𝐴𝐴𝑐𝑐 +  𝐹𝐹𝑦𝑦𝐴𝐴𝑠𝑠𝑐𝑐  (10) 

Shear stress at critical section to be checked for shear rein-
forcement. 

 
5 RESULT 

After analysing the structure in MATLAB using I-FEM the 
following observations are obtained 
• More size minimization occurred for the interior ele-

ments 
• The reduction took place more in concrete than in steel 

 
6 CONCLUSION 

For the selected structure the cost has reduced from 22.9 
lakhs to 18.3 lakhs, less by 20%. Thus the  method takes care of 
the uncertainities and give an optimum design. The overesti-
mation due to FOS leads to 20% more cost. 

Since the uncertainty is more in case of concrete than steel, 
higher value of  Factor of Safety is used for concrete in conven-
tional design. This leads to more weight and thus more dead 
load. 

The wind load acts only on peripheral elements of struc-
ture. However, in conventional design, the the SOF for all the 
uncertainties are applied together to all the elements and this 
leads to overestimation. The MATLAB coding has done for a 
particular frame. However, with some simple modefication it 
can be extended to any building structure. 
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